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Diels–Alder cycloadditions of chiral acrylamides with cyclo-
pentadiene proceed with high diastereofacial selectivity,
giving either endo-R to endo-S products depending of the
Lewis acid used.

Lewis acid catalyzed addition of dienes to chiral acrylamides is
a useful reaction because it provides one of the most effective
methods for creating new chiral centers during the formation of
six-membered rings.1 Various types of chiral dienophiles such
as chiral esters,1 N-acyloxazole derivatives,2 N-acylsultams,3
acrylates4 and acrylamides5 have been developed. Metal
coordination is important for diastereofacial selectivity in the
asymmetric synthesis. Lewis acids have been used for chelate
formation in Diels–Alder cyclizations to obtain high diaster-
eofacial selectivities.1–5 In general, the S form of the chiral
dienophile (auxiliary) exclusively afford the endo-R adduct
over the endo-S one, and the R form exclusively gives the S
adduct over the endo-R one. Issues associated with this absolute
stereochemical control depending upon Lewis acids and the
structures of dienophiles provide an important challenge in the
area of practical Diels–Alder reaction designs.4a,5b

In the hope of obtaining the opposite configuration of the
endo adduct and understanding the mechanism, three different
dienophiles 1, 2 and 3 were prepared and reacted with dienes in
the presence of various Lewis acids. Here we describe the
intriguing results obtained during development of Lewis acid
dependent stereocontrol toward both endo-R and endo-S
configuration with high diastereofacial selectivity. In order to
generalize the results, the requisite dienophiles 1–3 were
synthesized from (S)-indoline-2-carboxylic acid.6 They were
purified and their optical purities ( > 99.8% ee) were determined
by HPLC (Daicel chiral OD column, PriOH–n-hexane, 5 : 95).
The preliminary studies involved reaction of 1–3 with 4 and 5,
as shown in Scheme 1.

Extremely high levels of asymmetric induction can be
achieved in Diels–Alder cycloadditions of 1 or 3 with 4; in

contrast to other general dienophiles, 1 containing a carboxylate
moiety reacts with 4 to give differently configured adducts
depending on the Lewis acids employed; in the presence of
TiCl4, Ti(OPri)4 or SnCl4, 6a was obtained as the major
diastereomer (6a : 6b = endo-R : endo-S = > 99 : 1; entries 4–6
in Table 1), but with AlEt2Cl, ZnCl3 or BF3·Et2O the opposite
configuration of 6b was obtained (6a : 6b = 1 : > 99; entries

Table 1 Assymetric Diels–Alder cycloaddition with 1 and 3

Entry Dienophile Lewis acid T/°C t/h Yield (%)a endo : exob endob ds Config.c

1 1 Et2AlCl 278 10 95 90 : 10 > 99 : 1 S
2 1 BF3·Et2O 278 5 90 94 : 6 > 99 : 1 S
3 1 ZnCl2 25 12 90 83 : 17 99 : 1 S
4 1 TiCl4 0 10 92 65 : 5 99 : 1 R
5 1 Ti(OPri)4 25 12 87 72 : 28 94 : 6 R
6 1 SnCl4 278 5 92 95 : 5 91 : 1 R
7 3 — 25 48 92 > 99 : 1 > 99 : 1 R
8 3 Et2AlCl 240 10 95 > 99 : 1 > 99 : 1 R
9 3 AlCl3 240 8 88 > 99 : 1 > 99 : 1 R

10 3 BF3·Et2O 278 5 91 > 99 : 1 > 99 : 1 R
11 3 ZnCl2 25 12 90 > 99 : 1 > 99 : 1 R
12 3 TiCl4 25 7 90 > 99 : 1 > 99 : 1 R
13 3 Ti(OPri)4 25 15 89 > 99 : 1 > 99 : 1 R
14 3 SnCl4 278 10 91 98 : 2 98 : 2 R
15 3 ZrCl4 240 5 93 > 99 : 1 > 99 : 1 R
16 2 EtAlCl2 278 7 83 88 : 12 86 : 14 S
17 2 TiCl4 278 12 75 85 : 15 97 : 3 R

a Isolated yield. b Determined by HPLC analysis. (Chiral Column: Daicel OD). c Confirmed by [a]D of iodolactone or norbonene-2-methanol.

Scheme 1
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1–3 in Table 1). In the case of 2, the same trend of 7b was
observed, but in a less diastereoselective manner than for 1
(entries 16 and 17). In particular, 3 containing a diphenyl-
substituted tertiary alcohol moiety affords exceptionally high
diastereofacial selectivities (8a : 8b = > 99 : 1, yield = > 90%;
entries 7–15) regardless of the natures of the Lewis acid. The
endo configurations were readily ascertained by iodolactoniza-
tion of 6a–8a with I2 in DMF.5b The exo compound cannot be
lactonized under the same reaction conditions. The ratio of
endo-R and endo-S was determined by HPLC with the crude
6a–8a and 6b–8b without purification.7 The absolute configura-
tion of 6a, 7b or 8a was determined by reductive cleavage of 6a
to the known norbornene-2-methanol and subsequent compar-
ison of [a]D values.8

The differently configured adducts produced can be ration-
alized by the different intermediates formed between 1–3 and
the metals of the Lewis acids. Compounds 1–3 react with 4 to
favor formation of endo-R species 6a or 8a with TiCl4,
Ti(OPri)4, SnCl4 or ZrCl4 probably via formation of seven-
membered ring chelates with the acryloyl moiety of 10 or 11
having a cisoid conformation.4a,5b Helmechen and co-workers
reported the first evidence of formation of a seven-membered
ring chelate complex.4a It is noteworthy that even in the absence
of any Lewis acid, 3 reacts with 4 to give an excellent chemical
yield (92%) and high stereofacial selectivity (endo : exo =
> 99 : 1, endo-R : endo-S = > 99 : 1; entry 9 in Table 1) at 25 °C
after a long reaction time (24 h). The results can be attributed to
the hydrogen-bond cisoid conformation intermediate 11 where
the hydrogen acts as a Lewis acid. On the other hand, 1 or 2
prefer endo-S formation 6b or 7b with ZnCl2, AlEtCl2 or
BF3·Et2O, with high diastereofacial selectivity probably result-
ing from intermediate 9, as shown in Fig. 1 In contrast to Ti or
Sn Lewis acids, relatively weaker Lewis acids such as Zn, Al, or
B may not form a seven-membered ring complex, instead
forming a weak coordination with the amide carbonyl group
(9).4a,5b In the case of Evans’ model dienophile, an a,b-
unsaturated S-oxazolidinone, the endo-R form was obtained2a

and explained by formation of a six-membered ring inter-
mediate with Et2AlCl, which was clarified by a 13C NMR
study.2c However, in contrast to a significant chemical shift
change9a in the 1–SnCl4 chelation complex 11, 13C NMR
measurement of the 1-Et2AlCl mixture did not show significant
changes in the chemical shifts for either of the amide or ester
carbonyl peaks,9b which can be explained by a weak coordina-
tion (9) between 1 and Et2AlCl. Species 1 and 3 also reacted
with less reactive acrylic diene 5 at 25 °C to result in the same
trend: for 1 with TiCl4 the ratio of endo R : endo S was 97 : 3,
while with EtAlCl2 the ratio was reversed to 3 : 97, which is
comparable to entry 1; for 3 with both TiCl4 and Et2AlCl, endo
R : endo S = 97 : 3 and 94 : 6 respectively, which is comparable
to entries 8 and 12.

In summary, asymmetric Diels–Alder cycloadditions of 1, or
3 with 4 proceed with absolutely stereocontrolled diaster-
eofacial selectivities in both endo-S and endo-R (up to > 99%
de) depending upon Lewis acids used and the structures of
chiral dienophiles.
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Molecules, Korea Science and Engineering Foundation.
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Fig 1 Possible intermediates in Diels–Alder reactions.
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