A Lewis acid dependent asymmetric Diels–Alder process in the cyclization of new chiral acrylamides with dienes

Doo Han Park, Sung Han Kim, Sam Min Kim, Jin Dong Kim and Yong Hae Kim*

Department of Chemistry, Korea Advanced Institute of Science & Technology, Taejon, 305-701, Korea. E-mail: kimyh@sorak.kaist.ac.kr

Received (in Cambridge, UK) 30th March 1999, Accepted 20th April 1999

Diels-Alder cycloadditions of chiral acrylamides with cyclopentadiene proceed with high diastereofacial selectivity, giving either *endo-R* to *endo-S* products depending of the Lewis acid used.

Lewis acid catalyzed addition of dienes to chiral acrylamides is a useful reaction because it provides one of the most effective methods for creating new chiral centers during the formation of six-membered rings.1 Various types of chiral dienophiles such as chiral esters,¹ N-acyloxazole derivatives,² N-acylsultams,³ acrylates⁴ and acrylamides⁵ have been developed. Metal coordination is important for diastereofacial selectivity in the asymmetric synthesis. Lewis acids have been used for chelate formation in Diels-Alder cyclizations to obtain high diastereofacial selectivities.^{1–5} In general, the S form of the chiral dienophile (auxiliary) exclusively afford the endo-R adduct over the *endo-S* one, and the R form exclusively gives the Sadduct over the endo-R one. Issues associated with this absolute stereochemical control depending upon Lewis acids and the structures of dienophiles provide an important challenge in the area of practical Diels-Alder reaction designs.4a,5b

In the hope of obtaining the opposite configuration of the *endo* adduct and understanding the mechanism, three different dienophiles **1**, **2** and **3** were prepared and reacted with dienes in the presence of various Lewis acids. Here we describe the intriguing results obtained during development of Lewis acid dependent stereocontrol toward both *endo-R* and *endo-S* configuration with high diastereofacial selectivity. In order to generalize the results, the requisite dienophiles **1**–**3** were synthesized from (*S*)-indoline-2-carboxylic acid.⁶ They were purified and their optical purities (>99.8% ee) were determined by HPLC (Daicel chiral OD column, PrⁱOH–n-hexane, 5:95). The preliminary studies involved reaction of **1**–**3** with **4** and **5**, as shown in Scheme 1.

Extremely high levels of asymmetric induction can be achieved in Diels-Alder cycloadditions of 1 or 3 with 4; in

Table 1 Assymetric Diels-Alder cycloaddition with 1 and 3

contrast to other general dienophiles, **1** containing a carboxylate moiety reacts with **4** to give differently configured adducts depending on the Lewis acids employed; in the presence of TiCl₄, Ti(OPrⁱ)₄ or SnCl₄, **6a** was obtained as the major diastereomer (**6a** : **6b** = *endo-R* : *endo-S* = >99 : 1; entries 4–6 in Table 1), but with AlEt₂Cl, ZnCl₃ or BF₃:Et₂O the opposite configuration of **6b** was obtained (**6a** : **6b** = 1 : >99; entries

Scheme 1

Entry	Dienophile	Lewis acid	T/°C	t/h	Yield $(\%)^a$	endo : exo ^b	<i>endo^b</i> ds	Config. ^c
1	1	Et ₂ AlCl	-78	10	95	90:10	>99:1	S
2	1	BF3·Et2O	-78	5	90	94:6	> 99 : 1	S
3	1	ZnCl ₂	25	12	90	83:17	99:1	S
4	1	TiCl ₄	0	10	92	65:5	99:1	R
5	1	Ti(OPri)4	25	12	87	72:28	94:6	R
6	1	SnCl ₄	-78	5	92	95:5	91:1	R
7	3	_	25	48	92	>99:1	> 99 : 1	R
8	3	Et ₂ AlCl	-40	10	95	>99:1	> 99 : 1	R
9	3	AlCl ₃	-40	8	88	> 99 : 1	> 99 : 1	R
10	3	BF ₃ ·Et ₂ O	-78	5	91	> 99 : 1	> 99 : 1	R
11	3	ZnCl ₂	25	12	90	> 99 : 1	> 99 : 1	R
12	3	TiCl ₄	25	7	90	>99:1	> 99 : 1	R
13	3	Ti(OPri)4	25	15	89	> 99 : 1	> 99 : 1	R
14	3	SnCl ₄	-78	10	91	98:2	98:2	R
15	3	ZrCl ₄	-40	5	93	> 99 : 1	> 99 : 1	R
16	2	EtAlCl ₂	-78	7	83	88:12	86:14	S
17	2	TiCl ₄	-78	12	75	85:15	97:3	R
⁴ Isolated vield ^b Determine	ed by HPLC ana	lysis (Chiral C	Column: I	Daicel (D) ^c Confirm	hed by $[\alpha]_{\rm D}$	of iodolactor	e or norbonene-2-methanol.

1–3 in Table 1). In the case of **2**, the same trend of **7b** was observed, but in a less diastereoselective manner than for **1** (entries 16 and 17). In particular, **3** containing a diphenyl-substituted tertiary alcohol moiety affords exceptionally high diastereofacial selectivities (**8a** : **8b** = >99 : 1, yield = >90%; entries 7–15) regardless of the natures of the Lewis acid. The *endo* configurations were readily ascertained by iodolactonization of **6a–8a** with I₂ in DMF.^{5b} The *exo* compound cannot be lactonized under the same reaction conditions. The ratio of *endo-R* and *endo-S* was determined by HPLC with the crude **6a–8a** and **6b–8b** without purification.⁷ The absolute configuration of **6a**, **7b** or **8a** was determined by reductive cleavage of **6a** to the known norbornene-2-methanol and subsequent comparison of [α]_D values.⁸

The differently configured adducts produced can be rationalized by the different intermediates formed between 1-3 and the metals of the Lewis acids. Compounds 1-3 react with 4 to favor formation of endo-R species 6a or 8a with TiCl₄, Ti(OPrⁱ)₄, SnCl₄ or ZrCl₄ probably via formation of sevenmembered ring chelates with the acryloyl moiety of 10 or 11 having a *cisoid* conformation.^{4a,5b} Helmechen and co-workers reported the first evidence of formation of a seven-membered ring chelate complex.^{4a} It is noteworthy that even in the absence of any Lewis acid, 3 reacts with 4 to give an excellent chemical yield (92%) and high stereofacial selectivity (endo: exo = >99:1, endo-R: endo-S = >99:1; entry 9 in Table 1) at 25 °C after a long reaction time (24 h). The results can be attributed to the hydrogen-bond cisoid conformation intermediate 11 where the hydrogen acts as a Lewis acid. On the other hand, 1 or 2 prefer endo-S formation 6b or 7b with ZnCl₂, AlEtCl₂ or BF₃·Et₂O, with high diastereofacial selectivity probably resulting from intermediate 9, as shown in Fig. 1 In contrast to Ti or Sn Lewis acids, relatively weaker Lewis acids such as Zn, Al, or B may not form a seven-membered ring complex, instead forming a weak coordination with the amide carbonyl group (9).^{4*a*,5*b*} In the case of Evans' model dienophile, an α , β unsaturated S-oxazolidinone, the endo-R form was obtained^{2a} and explained by formation of a six-membered ring intermediate with Et₂AlCl, which was clarified by a ¹³C NMR study.2c However, in contrast to a significant chemical shift change^{9a} in the 1–SnCl₄ chelation complex 11, 13 C NMR measurement of the 1-Et₂AlCl mixture did not show significant changes in the chemical shifts for either of the amide or ester carbonyl peaks,9b which can be explained by a weak coordination (9) between 1 and Et_2AICI . Species 1 and 3 also reacted with less reactive acrylic diene 5 at 25 °C to result in the same trend: for **1** with TiCl₄ the ratio of *endo* R: *endo* S was 97:3, while with EtAlCl₂ the ratio was reversed to 3:97, which is comparable to entry 1; for 3 with both TiCl₄ and Et₂AlCl, endo R: endo S = 97:3 and 94:6 respectively, which is comparable to entries 8 and 12.

In summary, asymmetric Diels–Alder cycloadditions of 1, or 3 with 4 proceed with absolutely stereocontrolled diastereofacial selectivities in both *endo-S* and *endo-R* (up to >99% de) depending upon Lewis acids used and the structures of chiral dienophiles.

This work was supported by the Center for Biological Molecules, Korea Science and Engineering Foundation.

Notes and references

- For reviews, see L. A. Paquett, Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1994, vol. 3; W. Oppolzer, Angew. Chem., Int. Ed. Engl., 1984, 23, 876; H. Waldmann, Synthesis, 1994, 535.
- 2 (a) D. A. Evans, K. T. Chapman and J. Bisaha, J. Am. Chem. Soc., 1986, 110, 1238 and references therein; (b) K. Kimura, K. Murata, K. Otsuka, T. Shizuka, M. Maratake and T. Kunieda, Tetrahedron Lett., 1992, 33, 4461; (c) S. Castellino and W. J. Dwight, J. Am. Chem. Soc., 1993, 115, 2986; (d) S. Castellino, J. Org. Chem., 1990, 55, 5197; (e) M. R. Banks, A. J. Blake, A. R. Brown, J. I. G. Cadosan, S. Gavr, I. Gosney, P. K. G. Hodgson and P. Thorburn, Tetrahedron Lett., 1994, 35, 489; (f) N. Hashimoto, T. Ishizuha and T. Kunieda, Tetrahedron Lett., 1994, 35, 721; (g) L. F. Tietze, C. Schneider and A. Montenbruck, Angew. Chem., Int. Ed. Engl., 1994, 33, 980.
- W. Oppolzer, M. Wills, M. J. Kelly, M. Signer and J. Blagg, *Tetrahedron Lett.*, 1990, **35**, 5015;
 W. Oppolzer, *Pure Appl. Chem.*, 1990, **62**, 1241 and references therein;
 W. Oppolzer, C. Chapus, G. M. Dao, D. Reichlin and T. Godel, *Tetrahedron Lett.*, 1982, **23**, 4781;
 D. P. Curran, B. H. Kim, J. Daugherty and T. A. Heffner, *Tetrahedron Lett.*, 1988, **29**, 3555;
 W. Oppolzer, C. Chapuis and G. Bernardinelli, *Helv. Chim. Acta*, 1984, **67**, 1397.
- 4 (a) T. Poll, O. Metter and G. Helmechen, Angew. Chem., Int. Ed. Engl., 1985, 24, 112; (b) T. Poll, G. Helmechen and B. Bauer, Tetrahedron Lett., 1984, 25, 2191; (c) W. Choy, L. A. Reed, III and S. Masamune, J. Org. Chem., 1983, 48, 1137; (d) W. Oppolzer, C. Chapuis, G. M. Dao, D. Reichlin and J. T. Godel, Tetrahedron Lett., 1982, 46, 4781.
- 5 (a) Y. Kawanami, T. Katsuki and M. Yamaguchi, Bull. Chem. Soc. Jpn., 1987, **60**, 4190; (b) H. Waldmann, J. Org. Chem., 1988, **53**, 6133, Tetrahedron Lett., 1989, **30**, 4227; (c) M. P. Buence, C. A. Cativiela and J. A. Magorall, J. Org. Chem., 1991, **56**, 6551; (d) R. K. Boeckman, Jr., S. G. Nelson and M. D. Gaul, J. Am. Chem. Soc., 1992, **114**, 2258.
- Y. H. Kim, D. H. Park and I. S. Byun, J. Org. Chem., 1993, 58, 4511;
 Y. H. Kim, S. H. Kim and D. H. Park, *Tetrahedron Lett.*, 1993, 34, 6063;
 (c) Y. H. Kim and J. Y. Choi, *Tetrahedron Lett.*, 1996, 37, 5543.
- 7 In a typical experimental, a Lewis acid (1 mmol) was added to a solution of **1** (0.5 mmol) in CH₂Cl₂ (5 ml) under N₂. After stirring 10 min, **4** (5 mmol) was added. The reaction mixture was stirred while following the reaction by TLC, quenched with 1 M HCl solution, and then extracted with CH₂Cl₂ three times. The organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo*. The *endo* configurations were determined by the known iodolactonizations of **6a–8a** with I₂ in DMF [**8a** lactone: $[\alpha]_D 110.6 (c 1.0, CHCl_3)]$ [ref. 5(*b*)]. The ratio of *endo-R* and *endo-S* was determined by HPLC analysis using a chiral column (Daicel OD, Pr⁴OH–n-hexane 1:9).
- 8 J. A. Berson, A. Remanick, S. Suzuki, D. R. Warnhoff and D. Willner, J. Am. Chem. Soc., 1961, 83, 3986; W. Krimse and R. Siegfried, J. Am. Chem. Soc., 1983, 105, 950.
- 9 (*a*) The ¹³C NMR spectrum of the mixture of **6a** and SnCl₄ (1:1) was taken to show the significant chemical shift changes of the acrylamide carbonyl carbon (δ 163.8) and ester carbonyl carbon (δ 171.7) to δ 169.6 and 175.0, respectively, which support formation of a seven-membered ring complex between **6a** and SnCl₄. (*b*) In the case of **6a**–Et₂AlCl (1:2) no significant chemical shift changes for the two carbonyl carbons could be observed.

Communication 9/025351